This series of distinguished lectureships is named in honor of Dr. William Noble Lacey. He was a native of San Diego, did his undergraduate work at Stanford University, and then received M.S. and Ph.D. degrees at the University of California at Berkeley. He came to Caltech as an Instructor in 1916 and advanced through the academic ranks to Professor in 1931. In addition to a distinguished career in teaching and research, he served the Institute in a number of significant administrative capacities, particularly as Dean of Graduate Studies from 1946 to 1956 and as Dean of the Faculty from 1961 to 1962. Dr. Lacey was honored with a Founders Award from the American Institute of Chemical Engineers in December 1968. Dr. Lacey passed away on March 26, 1977.

The W. N. Lacey Lectures in Chemical Engineering are made possible by the W. N. Lacey Fund, established at Caltech by a number of friends and former students of Professor Lacey. This 2009 award is the forty-second of annual lectureships to be held each year on the Caltech campus during the winter or spring quarter. The objective of the lectureship program is to bring to the campus world-renowned experts currently active in chemical engineering or related disciplines. Previous recipients have been Arthur Metzner, University of Delaware, 1968; John Prausnitz, University of California, Berkeley, 1969; Rutherford Aris, University of Minnesota, 1970; Harry Drickamer, University of Illinois, 1971; Andreas Acivos, Stanford University, 1972; John Sinfelt, Exxon Research and Engineering Company, 1973; R. Byron Bird, University of Wisconsin, 1974; Monte Throdahl, Monsanto Company, 1975; Leon Lapidus, Princeton University, 1976; Michel Boudart, Stanford University, 1977; L. E. Scriven, University of Minnesota, 1978; Morton M. Denn, University of Delaware, 1979; Neal R. Amundson, University of Houston, 1980; Jerry McAfee, Gulf Oil Corporation, 1981; H. Ted Davis, University of Minnesota, 1982; Dan Luss, University of Houston, 1983; Edwin N. Lightfoot, Jr., University of Wisconsin, 1984; Charles W. Tobias, University of California, Berkeley, 1985; Thomas J. Hanratty, University of Illinois, 1986; Adel F. Sarofim, Massachusetts Institute of Technology, 1987; W. Harmon Ray, University of Wisconsin, 1988; Arthur W. Westerberg, Carnegie Mellon University, 1989; Richard C. Alkire, University of Illinois, 1990; Csaba Horváth, Yale University, 1991; William B. Russel, Princeton University, 1992; Timothy J. Anderson, University of Florida, 1993; Julio M. Ottino, Northwestern University, 1994; Robert S. Langer, Massachusetts Institute of Technology, 1995; Gary L. Haller, Yale University, 1996; Eduardo D. Sack, University of Pennsylvania, 1997; John L. Anderson, Carnegie Mellon University, 1998; Robert A. Brown, Massachusetts Institute of Technology, 1999; Douglas A. Laufenthal, Massachusetts Institute of Technology, 2000; Michael L. Shuler, Cornell University, 2001; Sangtae Kim, Lilly Research Laboratories, 2002; Klavs F. Jensen, Massachusetts Institute of Technology, 2003; Matthew Tirrell, University of California, Santa Barbara, 2004; Ronald G. Larson, University of Michigan, 2005; James C. Liao, University of California, Los Angeles, 2006; Viola Vogel, ETH, Switzerland, 2007; and L. Gary Leal, University of California, Santa Barbara, 2008.
PROFESSOR CAROL K. HALL is the Camille Dreyfus Distinguished University Professor of Chemical and Biomolecular Engineering at North Carolina State University. She received her B.A. in physics from Cornell University and her Ph.D. in physics from the State University of New York at Stony Brook. After postdoctoral training in the Chemistry Department at Cornell and a brief period as an economic modeler at Bell Laboratories, she joined the Chemical Engineering Department at Princeton University in 1977 as one of the first women to be appointed to a chemical engineering faculty in the U.S. In 1985 she joined the Chemical Engineering Department at North Carolina State University.

Hall’s research focuses on applying statistical thermodynamics and molecular-level computer simulation to topics of chemical, biological or engineering interest involving macromolecules or complex fluids. Current research activities include modeling of: polymer adsorption on heterogeneous surfaces, self assembly of dipolar colloidal particles, self assembly of nanoparticles for the delivery of cancer drugs, solid-fluid phase equilibria, hybridization of DNA on microarrays, and the formation of fibrils and other molecular aggregates of peptides and proteins. She is the author of over 190 publications, is a Fellow of the American Physical Society and was elected to the National Academy of Engineering in 2005.